Цель: исследовать современное научное направление «искусственного интеллекта» и вытекающие из него подразделы.
Материал Исследования: ресурсы интернета, книги об машинном обучении, Q-обучении.
Понятие искусственного интеллекта.
Искусственный интеллект, что подразумевают люди под этим словом? Может быть несуществующего человека, способного думать? Вероятно, что многие люди далекие от темы информационных наук так бы и подумали. Свою историю, новое научное направление под названием «искусственный интеллект», берёт в середине 20 века. К этому веку уже было предложено множество предпосылок: психологи работали над теориями относительно работы человеческого разума, философы размышляли о процессе познания мира, были созданы первые компьютеры и, самое важное, Алан Тьюринг пишет статью, в которой задаётся вопросом «Может ли машина мыслить?». Интерпретировать его тест можно так: «Человек общается по переписке с одним компьютером и одним человеком (Рисунок 1). На основании ответов компьютера и человека он должен определить с кем разговаривает. Задачей компьютера же является – введение в заблуждение человека, заставив его сделать неверный выбор».
Рис. 1. Интерпретация теста Алана Тьюринга
Но даже этот прославленный тест имеет ряд своих весомых минусов: тест Алана Тьюринга направлен на антропоморфизм. То есть проверяется лишь способность искусственного интеллекта походить на человека, а не его разумность вообще. Тест не мог определить полный интеллект машины по таким причинам, что поведение человека иногда может не поддаваться разумному толкованию, а также, что некоторое разумное поведение не может быть присуще человеку.
Надо сказать, что упомянуто определение искусственного интеллекта впервые было Джоном Маккарти в 1956 году на конференции в Дартмутском университете. Но его определение не несло прямое понимание интеллекта у человека. Со слов Маккарти, ИИ-исследователи используют методы, которые не наблюдаются у людей, если это необходимо для решения конкретных проблем. Согласно этому, Маккарти говорил, что проблема заключается в том, что люди не могут в целом определить, какие процедуры называются интеллектуальными. Простыми словами, искусственный интеллект - всего лишь неживой алгоритм, неспособный самостоятельно думать. Можно создать только что-то очень близкое к мыслительному процессу и обучению, как у людей.
Гипотеза «Сильного и слабого искусственного интеллекта».
Говоря об искусственном интеллекте, нельзя не сказать о ранее упомянутой в названии, гипотезе: теория сильного искусственного интеллекта предполагает, что компьютеры могут приобрести способность мыслить и осознавать себя как отдельную личность; теория слабого же искусственного интеллекта отвергает такое предположение. Термин «сильного искусственного интеллекта» был введён в 1980 году Джоном в мысленном эксперименте под названием «Китайская комната». В своём эксперименте, Джон Сёрл, ставил цель опровергнуть гипотезу «сильного» искусственного интеллекта и раскритиковать тест Тьюринга за его направленность на антропоморфизм. По той причине он выдвинул свои требования к созданию сильного ИИ:
· Планирование
· Обучение
· Сила воли
· Принятие решений в условиях неопределённости
· Сознание
· Мудрость
· Объединение всех этих способностей воедино для достижения общих целей и т.д.
На данный момент не существует искусственного интеллекта, обладающего всеми этими свойствами, поэтому данная вещь пока и остается гипотезой.
Q-Обучение или же один из способов машинного обучения.
И как же тогда создать похожий на человеческий разум искусственный интеллект? Один из вариантов ответа – это саморазвивающийся интеллект, который способен получая абсолютно новую для него информацию, без учителя, понять её и использовать в дальнейшем, но даже в наш век информационных технологий не смогли создать настолько идеальный интеллект, потому что на деле имеется множество подводных камней и почти неразрешимых вопросов в этой теме. Близким ко всему этому является способ машинного обучения ИИ, его идея заключается в том, что интеллектуальная система в процессе работы самостоятельно получает знания, обучаясь без учителя и распознает образы во входном потоке информации. Говоря простым языком, ИИ подобно человеку, чем дольше существует и получает различной информации, больше узнаёт о мире и может отдать в ответ. У машинного обучения существует множество способов его реализации, но главной темой этой статьи станет способ Q-обучения. Q-обучение относится к виду обучения с подкреплением. Для обучения машины этот метод использует систему поощрений и наказаний. Если искусственный интеллект делает что-то хорошее, например проходит через какую-то нужную нам вещь или идёт в правильном направлении, мы награждаем его, а если делает что-то плохое, например, врезается в стену, то мы наказываем его. В начале искусственный интеллект ведёт себя хаотично, набираясь опыта, чтобы понять, что стоит делать, а что нет, подобно взрослению ребёнка, который в раннем детстве не знает как правильно себя вести, а когда подрастёт, то в осознанном возрасте делает всё по закону. Для этого используют данные алгоритмы (Рисунок 3).
Рис. 3. Алгоритм Q-Обучения
Применить его, конечно, возможно только в ситуациях вида марковского процесса принятия решений (Рисунок 4), где происходит последовательное принятие решений с моделью, где решения в ситуациях частично случайны и частично контролируемы лицом, принимающим решения. Чтобы определить марковский процесс принятия решений, необходимо задать 4-кортеж (S, A, P* (*, *), R*(*, *)), где:
· S – конечное множество состояний,
· A – конечное множество действий,
· Pa (s, s') = Pr (st + 1 = s' | st =s, at = a) - вероятность, что действие a в состоянии s во время t приведет в состояние s' ко времени t + 1,
· Ra (s, s') - вознаграждение, получаемое после перехода в состояние s' из состояния s с вероятностью перехода Pa (s,s').
В современном мире эта спецификация используется во многих областях.
Рис. 4. Марковский процесс принятия решений с 3 состояниями и 2 действиями
Вывод.
Итак, в результате изучения темы искусственного интеллекта, машинного обучения и одного из способов машинного обучения, как Q-Обучение, можно сделать вывод, что создать сильный искусственный интеллект трудная задача и пока никому не удалость её решить. Оправданий этому много, например тот факт, что нейросвязи мозга человека устроены другим способом, чем алгоритмы машины, использующие входящую информацию не по собственному желанию, а исключительно в определённом и узком круге возможностей, относительно человеческого мозга, записанных в этом самом алгоритме.
Библиографическая ссылка
Шнитко А.Д. САМОРАЗВИВАЮЩИЙСЯ ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ // Старт в науке. – 2022. – № 1. ;URL: https://science-start.ru/ru/article/view?id=2155 (дата обращения: 23.11.2024).