Введение.
Математика – очень древняя наука. Многие понятия, правила, законы, формулы уже известны давно, и открыть что-то новое, просто невозможно. Всё равно на уроке математики мы открываем для себя новые знания. Из года в год наши знания увеличиваются. Например, при изучении темы «Степень» узнали, что произведение одинаковых множителей можно записать, как степень данного числа. Так мы познакомились с квадратом и кубом числа.
Устно возводить в квадрат однозначное число легко, для этого надо знать всего лишь таблицу умножения. А как устно возвести в квадрат двузначное число, меня очень заинтересовало.
Умея это выполнять, мы откажемся от письменного умножения. Конечно, можно посмотреть в таблицу квадратов, но она не всегда под руками.
Цель проекта: Поиск приёмов быстрого возведения чисел в квадрат.
Задачи: 1) Познакомиться с историей возникновения степени числа.
2) Изучить приёмы быстрого возведения чисел в квадрат.
3) Вывести свой способ возведения чисел в квадрат.
4) Выбрать из всех самый оптимальный способ.
Гипотеза: Применение приёмов быстрого возведения чисел в квадрат облегчает вычисления, повышает вычислительную культуру учащихся. Возводить в квадрат легко и просто.
Объект исследования: приёмы быстрого возведения чисел в квадрат.
Методы исследования: Анализ литературы. Поисковый метод. Сравнение.
Актуальность проекта: Во все времена умение производить в уме различные вычисления вызывает восхищение, это отличное упражнение, позволяющее поддержать мозг в состоянии «боевой готовности»[1]. Освоение способов устного возведения чисел в квадрат усиливает интерес к математике, развивает внимание, мышление, память, эрудицию и математические способности.
История возникновения квадрата числа.
Сложение, вычитание, умножение и деление идут первыми в списке арифметических действий. У математиков не сразу сложилось представление о возведении в степень как о самостоятельной операции, хотя в самых древних математических текстах Древнего Египта и Междуречья встречаются задачи на вычисление степеней[5].
В своей знаменитой «Арифметике» Диофант Александрийский [2] описывает первые натуральные степени чисел так:
«Все числа… состоят из некоторого количества единиц; ясно, что они продолжаются, увеличиваясь до бесконечности. …среди них находятся: квадраты, получающиеся от умножения некоторого числа самого на себя; это же число называется стороной квадрата, затем кубы, получающиеся от умножения квадратов на их сторону, далее квадрато-квадраты — от умножения квадратов самих на себя, далее квадрато-кубы, получающиеся от умножения квадрата на куб его стороны, далее кубо-кубы — от умножения кубов самих на себя».
Прошло много времени и у Рене Декарта[3] в его «Геометрии» (1637) мы находим современное обозначение степеней а?, а?,... Любопытно, что Декарт считал, что а*а не занимает больше места, чем а2 и не пользовался этим обозначением при записи произведения двух одинаковых множителей.
Немецкий ученый Лейбниц[4] считал, что упор должен быть сделан на необходимости применения символики для всех записей произведений одинаковых множителей и применял знак а2[5].
Приёмы быстрого возведения чисел в квадрат.
Учись считать быстро! Для овладения этим навыком любому человеку нужны:
- Способности;
- Алгоритмы;
- Тренировка;
- Опыт.
Давайте познакомимся с некоторыми приёмами возведения в квадрат двузначных чисел, которые выполняются почти мгновенно[1].
Возведение в квадрат числа, оканчивающегося на 5.
- 352 = 3 · (3 + 1) · 100 + 5 · 5 = 1200 + 25 = 1225.
- 752 = 5600 + 25 = 5625.
- 852 = 7225.
Чтобы возвести в квадрат число, оканчивающееся цифрой 5, надо умножить количество его десятков на следующее за ним число и приписать к произведению 25.
Возведение в квадрат числа, первая цифра которого равна 5.
- 522 = (5 · 5 + 2) · 100 + 2 · 2 = 2700 + 4 = 2704.
- 542 = (25 + 4) · 100 + 16 = 2916.
- 582 = 3300 + 64 = 3364.
- 512 = 2601.
Чтобы возвести в квадрат двузначное число, первая цифра которого равна 5, надо к 25 прибавить число единиц и приписать квадрат числа единиц.
- Если квадрат числа единиц является однозначным числом, то перед ним записать цифру нуль.
Возведение в квадрат числа, оканчивающегося на 1.
- 712; 71→70→702 = 4900; 712 = 4900 + 71 + 70 = 5041.
- 412 = 1600 + 41 + 40 = 1881.
- 812 = 6400 + 161 = 6561.
При возведении в квадрат числа, оканчивающегося на 1, нужно округлить число до десятков, возвести новое число в квадрат, и прибавить к этому квадрату исходное число и число, полученное при округлении.
Возведение в квадрат числа, оканчивающегося на 9.
- 592; 59 → 60→602 =3600; 592 = 3600 – 60 – 59 = 3600 – 119 = 3481.
- 292 = 900 – 29 – 30 = 841.
- 792 = 6400 – 159 = 6241.
- При возведении в квадрат числа, оканчивающегося на 9, нужно его округлить до десятков, возвести новое число в квадрат и из этого квадрата вычесть исходное число и число, полученное при округлении.
Возведение в квадрат числа, оканчивающегося на 4.
- 842; 84→85→852 = 7225; 842 = 7225 – 84 – 85 = 7225 – 169 = 7056.
- 342 = 1225 – 34 – 35 = 1225 – 69 = 1156.
- 742 = 5625 – 149 = 5476.
При возведении в квадрат числа, оканчивающегося на 4, нужно заменить цифру 4 на 5, возвести новое число в квадрат и из этого квадрата вычесть исходное число и число, полученное заменой 4 на 5.
Возведение в квадрат числа, оканчивающегося на 6.
- 562; 56→55→552 = 3025; 562 = 3025 + 56 + 55 = 3025 + 111 = 3136.
- 362 = 1225 + 36 + 35 =1296.
- 762 = 5625 + 151 = 5776.
При возведении в квадрат числа, оканчивающегося на 6, нужно заменить цифру 6 на 5, возвести новое число в квадрат, и прибавить к этому квадрату исходное число и число, полученное заменой 6 на 5.
Возведение в квадрат числа, близкого к 50.
а) Для чисел от 40 до 50 (числа пятого десятка). Опорное число – 15.
1) 442 = (15 + 4) · 100 + (50 – 44)2 = 1900 + 36 = 1936.
2) 432 = 18 · 100 + 72 = 1800 + 49 = 1849.
3) 482 = 2300 + 4 = 2304.
- Чтобы возвести в квадрат числа пятого десятка (41, 42, 43, 44, 45, 46, 47, 48, 49), надо к числу 15 прибавить число единиц числа, затем к полученной сумме приписать квадрат дополнения данного числа до 50.
б) Для чисел от 25 до 40 и до 50. Опорное число – 25.
1) 372 = (37 – 25) · 100 + (50 – 37)2 = 12 · 100 + 132 = 1200 + 169 = 1369.
Для этого приёма надо знать квадраты чисел от 1 до 25.
2) 282 = 3 · 100 + 222 = 300 + 484 = 784.
3) 462 = 2100 + 16 = 2116.
4) 392 = 1400 + 121 = 1521.
- Чтобы возвести в квадрат число от 25 до 50, надо из данного числа вычесть 25, результат умножить на 100 и прибавить квадрат дополнения данного числа до 50.
в) Для чисел от 50 до 60 (числа шестого десятка). Опорное число – 25.
1) 572 = (25 +7) · 100 + (57 – 50)2 = 32 · 100 + 72 = 3200 + 49 = 3249.
2) 522 = 2700 + 4 = 2704.
3) 592 = 3481.
- Чтобы возвести в квадрат число шестого десятка (51, 52, 53, 54, 55, 56, 57, 58, 59), надо к 25 прибавить число единиц, затем к полученной сумме приписать квадрат разности данного числа и 50.
- Если квадрат числа единиц является однозначным числом, то перед ним записать цифру нуль.
г) Для чисел от 50 до 60 и до 75. Опорное слово – 25.
Для этого приёма надо знать квадраты чисел от 1 до 25.
1) 582 = (58 – 25) · 100 + (58 – 50)2 = 33 · 100 + 82 = 3300 + 64 = 3364.
2) 712 = 46 · 100 + 212 = 4600 + 441 = 5041.
- Чтобы возвести в квадрат числа от 50 до 75, надо из данного числа вычесть 25, результат умножить на 100 и прибавить квадрат разности данного числа и 50.
Возведение в квадрат числа, близкого к 100.
972 = (97 – 3) · 100 + 32 = 9400 + 9 = 9409, где 3 – дополнение 97 до 100.
942 = (94 – 6) · 100 + 62 = 8800 + 36 = 8836.
982 = 9604.
- Чтобы возвести в квадрат число, близкое к 100, надо из него вычесть дополнение данного числа до 100, к результату приписать квадрат дополнения.
- Если квадрат дополнения является однозначным числом, то перед ним записать цифру нуль.
Возведение в квадрат любого двузначного числа.
а) Метод «пирамидка».
382 = (30 + 8)2 = (30 + 8) · (30 + 8) = (30 + 8) · 30 + (30 + 8) · 8 = 30 · 30 + 8 · 30 +
+ 30 · 8 + 8 · 8 = 3 · 3 · 100 + 3 · 8 · 10 + 3 · 8 · 10 + 8 · 8 = 32 · 100 + 3 · 8 · 2 · 10 + + 82 = 9 · 100 + 48 · 10 + 64 = 964 + 480 = 1444.
Можно оформить решение так:
272 = 449 + 280 = 729.
842 = 6416 + 640 = 7056.
б) Метод «перекидки».
422 = 42 · 42 = (42 + 2) · 40 + 22 = 44 · 40 + 4 = 1760 + 4 = 1764
782 = (78 + 8) · 70 + 64 = 86 · 70 + 64 = 6020 + 64 = 6084.
в) Метод «округления».
1) Для чисел, у которых цифра единиц больше 5:
472 = 47 · 47 = 50 · (47 – 3) + 32 = 50 · 44 + 9 = 2200 + 9 = 2209.
262 = 30 · 22 + 16 = 660 + 16 = 676.
1) Для чисел, у которых цифра единиц меньше 5:
732 = 73 · 73 = 70 · (73 + 3) + 32 = 70 · 76 + 9 = 5320 + 9 = 5329.
822 = 80 · 84 + 4 = 6720 + 4 = 6724.
г) Метод замены квадрата числа произведением.
292 = (29 – 9) · (29 + 9) + 92 = 20 · 38 + 81 = 760 + 81 = 841.
862 = (86 – 6) · (86 + 6) + 62 = 80 · 92 + 36 = 7360 + 36 = 7396.
542 = 50 · 58 + 16 = 2900 + 16 = 2916.
д) Метод понижения числа на единицу.
282 = (28 – 1)2 + 28 + (28 – 1) = 272 + 28 + 27 = 729 + 55 = 784.
562 = 552 + 56 + 55 = 3025 + 111 = 3136.
Минус этого приёма в том, что квадрат данного двузначного числа выражаем через квадрат числа на единицу меньше, который надо либо вычислять, либо снова понижать, и так до бесконечности.
Возведение в квадрат любого двузначного числа по методу Алины.
Приёмов возведения двузначных чисел в квадрат много и все они разные. Для каждой группы чисел надо знать своё правило, а удержать все правила в уме иногда невозможно.
Собирая материал для проекта, мне захотелось вывести свой приём быстрого возведения двузначного числа в квадрат.
Очень понравился приём возведения в квадрат чисел, оканчивающихся на 5. Он быстрый и понятный. А можно ли этот приём применить для любого числа? Изучая литературу, я нигде этого способа не увидела. Применяя его для любых двузначных чисел, вот что у меня получилось.
Напомню: 352 = 3 · (3 + 1) · 100 + 52 = 1200 + 25 = 1225.
Возведём по этому способу в квадрат число 36.
Мы знаем, что 362 = 1296.
3 · (3 + 1) · 100 + 62 = 1200 + 36 = 1236, но 1236 1296. Число 1236 < 1296 на 60.
Где же взять число 60? Можно догадаться, что 60 = 30 · 2, то есть удвоенное число десятков. Тогда получаем:
362 = 3 · 4 · 100 + 62 + 30 · 2 = 1236 + 60 = 1296.
Рассмотрим другие примеры.
562 = 5 · 6 · 100 + 62 + 50 · 2 = 3000 + 36 + 100 = 3036 + 100 = 3136.
462 = 2036 + 40 · 2 = 2036 + 80 = 2116.
Я много раз возводила числа в квадрат и увидела такую закономерность:
- Выпишем цифры 1, 2, 3, 4, 5, 6, 7, 8, 9.
- В этом ряду цифра 5 занимает середину; 4 и 6 отличаются от 5 на 1, они стоят на первом месте от 5; 3 и 7 – на втором; 2 и 8 – на третьем; 1 и 9 на четвёртом.
Пусть, например, надо возвести в квадрат число 39. Цифра 9 стоит на четвёртом месте от цифры 5, число 4 удваиваем, это будет 8, а теперь применяем приём:
392 = 3 · 4 · 100 + 92 + 30 · 8 = 1200 + 81 + 240 = 1281 + 240 = 1521.
240 можно представить так: 30 · 2 · 4, то есть десятки числа удвоить и умножить на номер места цифры единиц от цифры 5.
А как возвести в квадрат число, если цифра единиц меньше 5. Например, 732.
Число 73 < 75, значит, применяя приём возведения в квадрат для 75, квадрат числа 73 будет меньше.
732 = 5329;
732 = 5609 – применяя приём возведения в квадрат для числа, оканчивающегося на 5. Но 5329 ≠ 5609.
Решим уравнение:
732 = 5609 – х
5329 = 5609 – x
х = 5609 – 5329
х = 280, где 280 = 70 · 2 · 2, первая двойка удваивает число десятков в числе; вторая двойка обозначает номер места цифры 3 от цифры 5.
Эврика! Способ найден!
732 = 7 · 8 ·100 + 3 · 3 – 70 · 2 · 2 = 5609 – 280 = 5329.
Можно оформить решение и так:
- Чтобы возвести любое двузначное число в квадрат, надо количество десятков умножить на следующее число и приписать квадрат числа единиц. К полученному результату прибавить (или из полученного результата вычесть) удвоенное произведение десятков числа, умноженное на порядковый номер места цифры единиц в числовом ряду 14, 23, 32, 41, 5, 61, 72, 83, 94 от цифры 5.
- Если квадрат числа единиц является однозначным числом, то перед ним записать цифру нуль.
Какой приём возведения двузначного числа в квадрат наиболее простой? Для себя я выбрала два приёма. Мне они оба понятные и несложные.
- 682 = 62 100 + 82 + 60 · 8 + 60 · 8 = 3664 + 480 + 480 = 3664 + 960 = 4624.
- 682 = 6 · 7 · 100 + 82 + 60 ·2 · 3 = 4264 + 360 = 4624.
Какой приём выберите вы, думайте сами. Вам решать.
Заключение.
Владение приёмами быстрого возведения двузначного числа в квадрат даёт возможность выбрать в каждом отдельном случае наиболее рациональные и эффективные пути вычислений, что приводит:
- к сокращению времени на вычисления;
- к защите от массы вычислительных ошибок;
- к ведению записи в строчку и отказа от традиционного письменного умножения.
Считаю, что возводить двузначные числа в квадрат легко и просто. Гипотеза доказана.
Умение считать в уме остаётся полезным навыком для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него.
Возможность обходиться без калькулятора и в нужный момент оперативно решить поставленную арифметическую задачу – это здорово[1]!
Библиографическая ссылка
Шмакова А.Р. ВОЗВЕДЕНИЕ В КВАДРАТ ЛЕГКО И ПРОСТО // Старт в науке. – 2020. – № 3. ;URL: https://science-start.ru/ru/article/view?id=1911 (дата обращения: 23.11.2024).